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Abstract. We make a direct and model-independent measurement of the lowπ +π� mass phase
motion in theD+ ! π�π+π+ decay. Our preliminary results show a strong phase variation,
compatible with the isoscalarσ(500) meson. This result confirms our previous result [1] where
we found evidence for the existence of this scalar particle using full Dalitz-plot analysis. We apply
the Amplitude Difference (AD) method [2] to the same Fermilab E791 data sample used in the
preceding analysis. We also give an example of how we extract the phase motion of the scalar
amplitude, looking at thef0(980) in D+

s ! π�π+π+ decay.

INTRODUCTION

Fermilab experiment E791, with a full Dalitz plot analysis, showed strong evidence for
the existence of light and broad scalar resonances in charmD+ meson decay [1, 3]. The
π+π� resonance is compatible with the isoscalar mesonσ(500), and was observed in
the Cabbibo-suppressed decayD+! π�π+π+ . To get a good fit quality in this analysis,
it was necessary to include an extra scalar particle, other than the well established dipion
resonances [4]. For the new state, modeled by a Breit-Wigner amplitude, it was measured
a mass and width of 478+24

�23� 17 MeV/c2 and 324+42
�40� 21 MeV/c2respectively . The

D+ ! σ(500)π+ decay contribution is dominant, accounting for approximately half
of this particularD+ ! π�π+π+ decay. We found also evidence for a scalarK�π+

resonance, orκ, in the Cabibbo-allowed decayD+ ! K�π+π+ [3]. Further studies
aboutκ are discussed in this proceeding [5].

In full Dalitz plot analyses, each possible resonance amplitude is represented by a
Breit-Wigner function multiplied by angular distributions associated with the spin of
the resonance. The various contributions are combined in a coherent sum with complex
coefficients that are extracted from maximum likelihood fits to the data. The absolute
value of the coefficients are related to the relative fraction of each contribution and the
phases take into account the final state interaction (FSI) between the resonance and the
third pion.

Due to the importance of this scalar meson in many areas of particle and nuclear
physics, it is desirable to be able to confirm the amplitude’s phase motion in a direct
observation, without having to assume, a priori, the Breit-Wigner phase approximation
for low-mass and broad resonances [6, 7, 8]. Recently, a method was proposed to



FIGURE 1. The π�π+π+ invariant mass spectrum. The dashed line represents the total background.
Events used for the Dalitz analyses are in the hatched areas.

extract the phase motion of a complex amplitude in three body heavy meson decays
[2]. The phase variation of a complex amplitude can be directly revealed through the
interference in the Dalitz-plot region where it crosses with a well established resonant
state, represented by a Breit-Wigner.

Here we begin with a simple example, showing that the AD method can be applied to
extract the resonant phase motion of the scalar amplitude due to the resonancef0(980),
using the samef0(980) resonance in the crossing channel in the Dalitz plot of the decay
D+

s ! π�π+π+ using E791 data [9]. This example shows the ability of this method to
extract the phase motion of an amplitude. Then we apply the AD method using the well
known f2(1270) tensor meson in the crossing channel, as the base resonance, to extract
the phase motion of the scalar low massππ amplitude inD+! π�π+π+ , confirming
theσ(500) suggested by the E791 full Dalitz plot analysis [1].

EXTRACTING f0(980) PHASE MOTION WITH THE AD
METHOD.

From the original 2�1010 event data collected in 1991/92 by Fermilab experiment E791
from 500GeV=c π��nucleoninteractions [10], and after reconstruction and selection
criteria, we obtained theπ�π+π+ sample shown in Figure 1. To study the resonant
structure of these three-body decays we consider the 1686 events with invariant mass
between 1.85 and 1.89 GeV/c2, for theD+ analysis and the 937 events with invariant
mass between 1.95 and 1.99 GeV/c2 for theD+

s . Figure 2(a) shows the Dalitz-plot for
theD+

s ! π�π+π+ selected events and Figure 2(b) the Dalitz-plot forD+! π�π+π+

events. The two axes are the squared invariant-mass combinations forπ�π+, and the
plot is symmetrical with respect to the two identical pions.



FIGURE 2. (a) TheD+
s ! π�π+π+ Dalitz plot and (b) theD+! π�π+π+ Dalitz plot. Since there

are two identical pions, the plots are symmetrical.

We can see in Figure 2(a) the scalarf0(980) in s12, the square invariant mass, crossing
the f0(980) in s13, forming an interference region arounds13= s12= 0.95GeV2. The AD
method uses the interference region, between two crossing resonances, to extract the
phase motion of one of them, and Final State Interaction (FSI) phase, provided that the
second is represented by a Breit-Wigner [2]. In fact we are using aBootstrapapproach;
that is, using a well established resonancef0(980) in s12 to extract its phase motion in
s13. It is a nice and didactic example to show the ability of this method to extract the
phase motion of an amplitude and the FSI phase within the E791 data sample.

The coherent amplitude to describe the crossing between a well known scalar reso-
nance, represented by a Breit-Wigner ins12, and a complex amplitude under study ins13
in a limited region of the phase space, where we can neglect any other contributions, is
given by:

A (s12;s13) = aRBW (s12)+as=(p
�=
p

s13)sinδ (s13)e
i(δ (s13)+γ) (1)

p�=
p

s13 is a phase space factor to make this description compatible withππ scatter-
ing, γ is the final state interaction (FSI) phase difference between the two amplitudes,
aR and as are respectively the real magnitudes of the resonance and the under-study
complex amplitude. Finallysinδ (s13)e

iδ (s13) represents the most general amplitude for a
two-body hadronic interaction.

The Breit Wigner distribution is given by:

BW =
m0Γ0

m2
0�s� im0Γ(m)



FIGURE 3. f0(980) s12 distribution, divided inm0+ ε (black) andm0� ε (gray)

Taking the amplitude square of Equation 1 we get:

jA (s12;s13) j2= a2
R jBW f0(980)(s12) j2 +a2

s=p�2=s13 sin2δ (s13)

+
2aRasm0Γ0sinδ (s13)=(p

�=
p

s13)

(m2
0�s12)

2+m2
0Γ2(s12)

� [(m2
0�s12)cos(δ (s13)+ γ)+m0Γ0sin(δ (s13)+ γ)] (2)

Since the Breit-Wigner is approximately symmetrical aroundm0 as seen in Figure 3
(the asymmetries would come fromΓ(m), and is negligible for the narrowf0(980)). We
can divide ourf0(980) mass distribution in two pieces, one form0+ε and the other with
m0� ε. From Equation 2 and noticing that the pure Breit-Wigner term will cancel we
can write:

jA (m2
0+ ε;s13) j2� jA (m2

0� ε;s13) j2=
�4asaR=(p

�=
p

s13)εm0Γ0

ε2+m2
0Γ2

0

(sin(2δ (s13)+ γ)�sinγ) (3)

Only the real part of the interference term in Equation 2 remains.
To extract the phase motion of the scalar amplitude ins13 through thef0(980) in s12,

represented by a Breit-Wigner, we took the events ins12 between 0.7 and 1.2 GeV2 and
divided them into two bins, as presented in Figure 3. Thes13 distribution for the events
of thes12 region integrated between 0.95 and 1.2 GeV2, is shown in Fig. 4a and the same
in Figure 4b for events integrated between 0.7 and 0.95 GeV2.

We can see that the peaks in these two plots are in differents13 positions. The
subtraction of these distributions, corresponds to the integration of Equation 3, that we
can write as:



FIGURE 4. s13 distribution. a) For events
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Z
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��C (sin(2δ (s13)+ γ)�sinγ) (4)

whereC is a constant factor coming from the constant and integrated factors of Equation
3, to be determined from data. The variation of the phase space in the integral was
considered negligible for thef0(980) resonance.∆

R
A 2 directly reflects the behavior

of δ (s13). A constant∆ jA j2 would imply constantδ (s13). This would be the case for
a non-resonant contribution. The same way a slow phase motion will produce a slowly
varying∆ jA j2 and a full resonance phase motion produces a clear signature in∆ jA j2
with the presence of zero, maximum and minimum values.

The subtracted distribution, corresponding to Equation 4, is shown in Figure 5. There
is a significant difference between the minimum (bin3) and maximum (bin4) of∆

R
A 2.

We can see in Equation 4 that the zeros occur whenδ (s13) = 00, 1800 or π=2� γ. In
Figure 5 we can see a zero ats13 near 0.5GeV2, another one ats13 = 0.95GeV2 and a
third zero near 1.4GeV2. Assumingδ (s13) is an analytical function ofs13, Equation 4
allow us to set the two following conditions at the maximum and minimum values of
∆
R
A 2 respectively:

∆
Z
A

2
max! sin(2δ (s13)+ γ) =�1 (5)

∆
Z
A

2
min! sin(2δ (s13)+ γ) = 1 (6)

with these two conditions we getC andγ, calculated from the maximum and mini-
mum values of the∆

R
A 2 distribution in Figure 5:



FIGURE 5. s13 distribution of∆
R
A 2ds12.

C = (∆
Z
A

2
max�∆

Z
A

2
min)=2 (7)

γ = sin�1(
∆
R
A 2

max+∆
R
A 2

min

∆
R
A 2

min�∆
R
A 2

max
) (8)

From Figure 5 and using the equations above, we measureγ = �0:15�0:31, that is
compatible with zero, as should be since we are crossing the same resonances with, of
course, the same final state interaction phase.

With the above conditions we solve Equation 4 forδ (s13):

δ (s13) =
1
2
(sin�1(

1
C

∆ jA (s13) j2 +sin(γ))� γ) (9)

Assuming thatδ (s13) is an increasing function ofs13, we can extract directly the
δ (s13) value from each bin of Figure 5, creating thef0(980) phase motion shown in Fig-
ure 6. The errors in the plot were produced by generating statistically compatible exper-

iments, allowing each bin of
R m2

0+ε
m2

0

jA (s12;s13) j2 (Figure4a) and
R m2

0
m2

0�ε
jA (s12;s13) j2

(Figure4b) to fluctuate randomly following a Poisson law. We then solve the problem for
each "experiment". The error in each bin ofδ (s13) will be the RMS of the distributions
generated by the "experiments".

From Figure 6 we can see what one could expect, that is the scalar amplitude near
970GeV with a phase motion of about 1800 degrees. This example demonstrates the
ability of AD method to extract the phase motion of an amplitude with E791 statistics.



FIGURE 6. δ (s13) plot with the errors.

EXTRACTING THE SCALAR LOW MASS ππ AMPLITUDE
PHASE MOTION WITH THE AD METHOD.

In the preceding section, we showed how to apply the AD method to extract the phase
motion of an amplitude, from nonleptonic charm-meson three-body decay. Here we
apply the same method to extract the phase motion of the scalar low-massππ amplitude
in D+ ! π�π+π+ decay, where we previously found strong experimental evidence
for the existence of a light and broad isoscalar resonance [1]. To start this analysis, we
have to decide what is the best well-known resonance to be used for crossing the low
mass amplitude under study. Taking a look at Figure 2b we can see the signature of
three resonances that in principle could be used, theρ(770), f0(980) and f2(1270). In
fact, the E791 analysis of this Dalitz plot found a significant contribution from these
three resonances inD+! π�π+π+ decay [1]. Since thisD+ decay is symmetric for
the exchange of theπ+ meson, each resonance ins12 is present also ins13. Then if we
useρ(770) as the base resonance ins12, we have also the presence of theρ(770) in
same mass square distribution of theσ(500) in s13. The proximity of theρ(770) with
the σ(500), both broad resonances, creates an overlap between them such that we are
not able to separate the phase motion of one from the other. We could use thef0(980)
as a base resonance, but again the presence of theρ(770) overlapping with theσ(500)
creates the same problem.

There remains only the tensor mesonf2(1270) candidate atm2
0 = 1:61GeV2, which is

placed where theρ(770) contribution reaches a minimum due the angular distribution
in the middle of the Dalitz plot, as we can see from theD+! ρ(770)π+ decay Monte
Carlo simulation shown in Figure 7.

The amplitude for the crossing of thef2(1270) in s12 and the complex amplitude
under study ins13 is given in the same way as in Equation 1:



FIGURE 7. MC ρ(770) distribution inD+! π�π+π+ decay. There is little contribution between 1.2
to 1.8GeV2

A (s12;s13) = aR BW f2(1270)(s12)
j=2
M f2(1270)(s12;s13)+ (10)

+ as=(p
�=
p

s13) sinδ (s13) ei(δ (s13)+γ)

where j=2M f2(1270)(s12;s13) is the angular function for thef2(1270) tensor resonance.
The amplitude under study represents the scalar low massππ amplitude in a limited
region of the phase space, where we can neglect the other amplitude contributions.

Both the widthΓ(s12) and the angular functionj=2M f2(1270) from this resonance

produce asymmetries ins12 and consequently we can not use the nominalf2(1270)
mass to divide our sample into two slices, as we did for thef0(980) example. So we
performed a Monte Carlo study to determine the effective mass we must use. Thes12
Monte Carlo projection of thef2(1270) in D+! π�π+π+ decay is shown in Fig. 8. We
can see the asymmetry created around the nominalf2(1270) mass value due toΓ(s12)

and j=2M f2(1270) contributions to the amplitude.

Here we require an effective mass squared (me f f), such that the number of events

integrated betweenm2
e f f andm2

e f f +ε is equal, by construction, to the number of events

integrated betweenm2
e f f and m2

e f f � ε. We choose, using thef2(1270) Monte Carlo

distribution, a mass ofm2
e f f = 1:535GeV2, within �0:26GeV2 1, in such way that we

can write:

1 Within this mass region, the amount ofρ(770) events was estimate to be around 5%



FIGURE 8. Monte Carlof2(1270) s12 distribution, divided inm0+ ε (black) andm0� ε (gray)

Z m2
e f f+ε

m2
e f f

jBW f2(1270)(s12)
j=2
M f2(1270) j2 ds12=

Z m2
e f f

m2
e f f�ε

jBW f2(1270)(s12)
j=2
M f2(1270) j2 ds12

(11)
The effective mass squaredme f f and the separation betweenm2

e f f + ε (black) and

m2
e f f� ε (gray) are shown in Figure 8.

The j=2M f2(1270) function ins13 is presented in Figure 92. The distribution between

m2
e f f andm2

e f f + ε is shown in Fig. 9a, for events betweenm2
e f f andm2

e f f� ε in Fig.
9b. We can see that these two plots are slightly different. However we considered the
approximation j=2M+

f2(1270)(s13) � j=2M�

f2(1270)
(s13) and take an average function

j=2M̄ f2(1270)(s13). Another important effect, that we had to take into account, is the

zero of this function ats13 = 0:48GeV2. Below we discuss the consequences of that in
the AD method.

With the above considerations about thef2(1270) in s12 ands13 we can write the
integrated amplitude-square difference as:

∆
Z
A

2 =
Z m2

e f f+ε

m2
e f f

jA (s12;s13) j2 ds12�
Z m2

e f f

m2
e f f�ε

jA (s12;s13) j2 ds12

��C (sin(2δ (s13)+ γ)�sinγ) j=2
M̄ f2(1270)(s13)=(p

�=
p

s13) (12)

2 Since we divided our data sample by this function, we represent this function in a histogram with the
same binning of data.



FIGURE 9. Fast MC j=2M f2(1270) distribution ins13. a) For events betweenm2
e f f andm2

e f f + ε . b) For

events betweenm2
e f f andm2

e f f� ε .

This Equation is similar to Equation 4, with an extra angular function term
j=2M̄ f2(1270)(s13)

3.

The background and the acceptance are similar betweenm2
e f f andm2

e f f + ε andm2
e f f

and m2
e f f � ε. Since we are subtracting these two distributions, we do not take into

account these effects in our analysis.
The

R
A 2 in s13, for events integrated ins12 betweenm2

e f f = 1:535GeV2 andm2
e f f+ε

andm2
e f f andm2

e f f� ε, with ε = 0:26GeV2 are presented in Figure 10a and b respec-
tively.

Subtracting these two histograms, in the same way we did for thef0(980) example,
gives the∆

R
A 2 of the Equation 12. The result is shown in Figure 11.

Here we can not extract directly the phase motion from Figure 11, as we did for the
f0(980) example using the conditions 5 and 6. We have to divide the∆

R
A 2 by M̄

(average of the distributions in Figures 9a and b) and multiply byp0, since phase space
here is an important effect. By doing this the onlys13 dependence of the right hand
side of Equation 12 is inδ (s13). However, as we could see in Figure 9, there is a zero
about 0.48GeV2 in the angular function, which means a singularity around this value
in ∆

R
A 2=M̄ . To avoid this singularity, we first produced a binning in such a way that

the singularity is placed in the middle of one bin. In Figure 12 we show the∆
R
A 2 by

M̄ distribution. We can see that the 6th bin (around 0.48GeV2), has a huge error, that
corresponds to the bin of the singularity. Due to the singularity we decided not to use

3 For short we shall use, from here onj=2M̄ f2(1270)(s13) = M̄ andp�=
p

s13= p0.



FIGURE 10. Events distributions ins13, a) for events
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FIGURE 11. s13 distribution for∆
R
A 2.

this region (bin 6) further in this analysis. The consequences of this choice are going to
be taken care of in systematic error studies. In any case, the singularity could only affect
the position of the minimum of Figure 12. It does not interfere with the general feature
of starting at zero, having statistically significant maximum and minimum values, and
coming back to zero, indicating a strong phase variation. Bins 2 and 5 are respectively
the maximum and minimum value of∆

R
A 2p0=M̄ of Figure 12 where we use the

Equation 5 and 6 conditions.
With the same assumptions used for thef0(980), that isδ (s13) is an analytical and

increasing function ofs13, and using Equation 7, 8 and 9 (multiplied byp0 and divided



FIGURE 12. s13 distribution for∆
R
A 2 p0=M̄ .

by M̄ ), we can extractγ and δ (s13) from Figure 12. For the FSI phase we found
γ = 3:26�0:33, that is somewhat bigger than found by the E791 full Dalitz-plot analysis
[1] (γDalitz = 2:59�0:19). The fact that we used the effective mass for thef2(1270) =
1.535 GeV2 instead of the nominal mass is responsable for the shift observed in the
relative phase. To verify this statement we generated 1000 samples of fast-MC, with
only two amplitudes,f2(1270) andσ(500). For both we used Briet-Wigner functions
and the E791 parameters. We generated the phase difference of 2.59 rad, measured by
the E791. For these 1000 samples, we measureγ using the method presented here. The
result has a mean value of 3.07. We can say that the difference between the generated
and measuredγ value is a correction factor due to the use of an effective mass. Using
this offset factor ( 2.59 - 3.07 = -0.48) we correct the measurementγ = 3:26�0:33 to
γcorr = 2:78�0:33. So the observedγ difference between Dalitz analysis and theγcorr
is in good agreement, with a difference below one standard deviation.

Theδ (s13) was extracted bin by bin, with the same approach for the errors used in the
f0(980) example, and we got the distribution shown in Figure 134. We can see a strong
phase variation of about 1800 around the mass for theσ(500), showing a phase motion
compatible with a resonance.

CONCLUSIONS

We showed that the AD method can be applied to E791 data to extract the phase motion
of the resonancef0(980) in the Dalitz plot of the decayD+

s ! π�π+π+ . This example
demonstrates the ability of this method to extract the phase motion of a resonance

4 In Figure 13 there is no the 6th bin because of the singularity we mentioned above.



FIGURE 13. Phase motionδ (s13) distribution for the scalar low massππ amplitude, with the errors.

amplitude.
Preliminary E791 results present a direct and model-independent approach, obtained

with the AD method, and confirms our previous result of the evidence of an important
contribution of the isoscalarσ(500) meson inD+ ! π�π+π+ decay [1]. We use the
well known f2(1270) tensor meson in the crossing channel, as the base resonance, to
extract the phase motion of the low massππ scalar amplitude. We obtain aδ (s13)

variation of about 1800 consistent with a resonantσ(500) contribution. We also obtain
good agreement between the FSIγcorr observed with AD method and theγ observed in
the full Dalitz plot analysis.
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